Understanding Breakpoint Chlorination

Breakpoint Chlorination - Important Definitions

- •Breakpoint chlorination is important to understand for systems using chloramination, or in chlorination systems where ammonia might be present.
- •Free chlorine: the sum of molecular chlorine (Cl₂), hypochlorous acid (HOCl), and hypochlorite ion (OCl-) in a solution.
- •Chloramines: a form of combined chlorine formed when an amine-containing molecule (e.g. ammonia) is added to free chlorine.
- •Total chlorine: the sum of free and combined chlorine in a solution.

Free Chlorine Dose

Zone I

- Most free chlorine added here is reduced by transition metals.
- •Total chlorine residual increases minimally with added free chlorine.

Zone II

- •As the dose is increased, free chlorine reacts with ammonia to form chloramines.
- Total chlorine residual increases as more free chlorine is dosed.

Zone III

- Total chlorine residual decreases as more chloramines form and leave solution.
- •Eventually, the chlorine dose overcomes the oxidant demand, called the breakpoint.

Zone IV

- •Once breakpoint is reached, total chlorine residual increases with added free chlorine.
- •There is now a free chlorine residual for disinfection purposes.

Free Chlorine Dose

Zone	Reaction(s)	What Makes Up the Total Chlorine Residual?
I	$HOCl + M^{n+} \rightarrow Cl^{-} + M + OH^{-}$	HOCl
II	$HOCl + NH_3 \rightarrow NH_2Cl + H_2O$	HOCl + NH ₂ Cl
III	$NH_2Cl + HOCl \rightarrow NHCl_2 + H_2O$ $NHCl_2 + HOCl \rightarrow NCl_3 + H_2O$	HOCl + NH ₂ Cl + NHCl ₂ + NCl ₃
IV	_	HOCl

Kuntze Academy – CHEM102

•Want more help on this topic? Scan this QR code to learn more.

CHEM102: Introduction to Total Chlorine

Kuntze Support Center

•More questions? Check out the Kuntze Support Center.

Kuntze Support Center

